A Fault Detection Strategy for Software Projects
نویسندگان
چکیده
Original scientific paper The existing software fault prediction models require metrics and fault data belonging to previous software versions or similar software projects. However, there are cases when previous fault data are not present, such as a software company’s transition to a new project domain. In this kind of situations, supervised learning methods using fault labels cannot be applied, leading to the need for new techniques. We proposed a software fault prediction strategy using method-level metrics thresholds to predict the fault-proneness of unlabelled program modules. This technique was experimentally evaluated on NASA datasets, KC2 and JM1. Some existing approaches implement several clustering techniques to cluster modules, process followed by an evaluation phase. This evaluation is performed by a software quality expert, who analyses every representative of each cluster and then labels the modules as fault-prone or not fault-prone. Our approach does not require a human expert during the prediction process. It is a fault prediction strategy, which combines a method-level metrics thresholds as filtering mechanism and an OR operator as a composition mechanism.
منابع مشابه
Variable Speed Wind Turbine DFIG Back to Back Converters Open-Circuit Fault Diagnosis by Using of Combiniation Signal-Based and Model-Based Methodes
Condition monitoring (CM) and Fault Detection (FD) of wind turbine lead to increase in reliability and availability of turbine. IGBT open circuit of wind turbine converter will bring about depletion in output current of converter and as a result, reduction in production of wind turbine power. In this research, back to back converter IGBT open - gate fault for wind turbine based on DFIG is detec...
متن کاملFramework for modeling software reliability, using various testing-efforts and fault-detection rates
This paper proposes a new scheme for constructing software reliability growth models (SRGM) based on a nonhomogeneous Poisson process (NHPP). The main focus is to provide an efficient parametric decomposition method for software reliability modeling, which considers both testing efforts and fault detection rates (FDR). In general, the software fault detection/removal mechanisms depend on previo...
متن کاملDetection of high impedance faults in distribution networks using Discrete Fourier Transform
In this paper, a new method for extracting dynamic properties for High Impedance Fault (HIF) detection using discrete Fourier transform (DFT) is proposed. Unlike conventional methods that use features extracted from data windows after fault to detect high impedance fault, in the proposed method, using the disturbance detection algorithm in the network, the normalized changes of the selected fea...
متن کاملImpact of pair programming on thoroughness and fault detection effectiveness of unit test suites
Pair programming is regarded as one of the practices that can make testing more rigorous, thorough and effective. Therefore, we examined pair programming vs. solo programming with respect to both, thoroughness and fault detection effectiveness of test suites. Branch coverage and mutation score indicator were used as measures of how thoroughly tests exercise programs, and how effective they are,...
متن کاملA Novel Approach for Identifying Software Fault Prediction in mining
Identifying and locating defects in software projects is a difficult work. In particular, when project sizes grow, this task becomes expensive. The aim of this research is to establish a method for identifying software defects using data mining applications methods. In this work we used Synthetic data Program (SD).We used mining methods to construct a two step model that predicts potentially de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013